BAB II TINJAUAN PUSTAKA

2.1. Keji Beling (Strobilanthes crispus Bl.)

2.1.1. Tanaman Keji Beling (Strobilanthes crispus BI.)

Tanaman keji beling (*Strobilanthes crispus* BI.) termasuk kedalam famili *Acanthacae*, Nama strobilanthes berasal dari bahasa latin 'strobilos' yang berarti kerucut dan 'anthos' yang berarti bunga atau pucuk. Genus Strobilanthes pertama kali dideskripsikan secara ilmiah oleh Christian Gottfried Daniel Nees von Esenbeck pada abad ke-19. Tanaman ini berasal dari Asia, dengan mayoritas berasal dari kawasan tropis Asia dan Madagaskar (Preethi & Suseem, 2014).

Gambar 2. 1 Daun Keji Beling (*Strobilanthes crispus* BI.) Sumber: dokumentasi pribadi

Menurut (Preethi & Suseem, 2014) tanaman keji beling di klasifikasikan sebagai berikut:

Kingdom : Plantae

Subkingdom : Phanerogamia

Division : Angiospermia

Class : Eudicots
Subclass : Asterids

Order : Lamiales

Family : Acanthaceae
Genus : Strobillanthus

Spesies : Strobilanthes crispus BI.

2.1.2. Sinonim

Nama ilmiah : Strobilanthes crispus BI., sericocalyx crispus (L) Bremek.

Nama asing : Fenugreek

Nama daerah : kecibeling (Jakarta), picah beling (sunda), enyoh kelo,

ngkilo (Jawa), lire (ternate), remek daging (pasundan)

(Benigna, 2015).

Family : Acanthaceae

2.1.3. Morfologi

Tumbuhan keji beling (Strobilanthes crispus Bl.) merupakan jenis semak yang biasanya tumbuh dalam kelompok. Dari segi morfologi, tumbuhan ini memiliki batang beruas yang berbentuk bulat dengan diameter berkisar antara 0,12 hingga 0,7 cm. Berbulu kasar, dan memiliki percabangan monopodial. Kulit batangnya berwarna ungu dengan bintik-bintik hijau saat masih muda, yang kemudian berubah menjadi coklat seiring dengan bertambahnya usia. Daun Strobilanthes crispus termasuk dalam jenis daun tunggal yang tumbuh berhadapan. Bentuk daun bervariasi dari bulat telur hingga lonjong dengan permukaan yang berlubang halus, tepi yang bergelombang, dan ujung daun yang meruncing. Pangkal daun juga runcing, panjangnya berkisar antara 5 hingga 8 cm dan lebar sekitar 2,5 cm. Daun ini bertangkai pendek, memiliki tulang daun menyirip, dan bagian atas daun berwarna hijau tua sementara bagian bawahnya berwarna hijau muda. Bunga Strobilanthes crispus merupakan bunga majemuk yang berbentuk bulir. Mahkota bunga ini menyerupai corong dengan empat benang sari, dan memiliki warna putih yang sedikit kekuningan. Buahnya berbentuk bulat, yang pada awalnya berwarna hijau dan berubah menjadi hitam saat matang. Biji buahnya kecil dan berbentuk bulat, sedangkan sistem perakarannya tergolong tunggang, dengan akar yang menyerupai tombak dan berwarna putih (Resta, 2014).

2.1.4. Kandungan Kimia Daun Keji Beling (Strobilanthes crispus BI.)

Tanaman keji beling (*Strobilanthes crispus* BI.) dikenal memiliki sejumlah senyawa metabolit sekunder yang bermanfaat, antara lain saponin, flavonoid, terpenoid, polifenol, dan kalium (Junardin *et al.*, 2024).

Daun kering keji beling mengandung total abu mencapai 21,6%, yang berasal dari kandungan mineral yang melimpah, seperti kalium (51%), kalsium (24%), natrium (13%), zat besi (1%), dan fosfor (1%). Selain itu, kadar vitamin yang larut dalam air, termasuk vitamin C, B1, dan B2. Daun ini juga mengandung berbagai komposisi proksimat lainnya serta senyawa-senyawa seperti katekin, alkaloid, kafein, dan tanin (Ismail *et al.*, 2000).

2.1.5. Manfaat

Di kalangan masyarakat umum, daun keji beling (*Strobilanthes crispus* BI.) dikenal sebagai tanaman obat yang memiliki berbagai manfaat. Tanaman ini telah terbukti dapat membantu mengatasi sejumlah masalah kesehatan, antara lain batu ginjal, batu empedu, diabetes mellitus, wasir atau ambeien, sembelit, serta kesulitan dalam buang air kecil (Junardin *et al.*, 2024).

2.2.Simplisia

2.2.1. Pengertian Simplisia

Simplisia adalah bahan alam yang telah dikeringkan yang digunakan untuk pengobatan dan belum mengalami pengolahan kecuali dinyatakan lain suhu pengeringan simplisia tidak lebih dari 60°C (BPOM RI, 2023).

2.2.2. Jenis-jenis Simplisia

1. Simplisia Nabati

Simplisia nabati adalah bahan alami yang berasal dari tanaman utuh, bagian-bagian tanaman, eksudat tanaman, atau kombinasi dari ketiganya. Contoh sederhana dari bahan ini termasuk Kecubung (*Datura folium*) dan Lada (*Piperis nigri Fructus*).

Eksudat tanaman merupakan cairan yang secara alami keluar dari sel-sel tanaman, atau dapat juga dihasilkan melalui rangsangan yang sengaja diberikan pada sel tersebut. Eksudat ini dapat terdiri dari berbagai zat atau bahan nabati

lainnya yang dipisahkan atau diisolasi melalui metode tertentu.. (Haerani *et al.*, 2023)

2. Simplisia Hewani

Simplisia hewani merupakan bahan alami yang berasal dari hewan, baik dari bagian-bagian hewan tertentu maupun zat-zat yang dihasilkan oleh hewan tersebut, yang masih dalam bentuk yang belum mencapai kemurnian senyawa kimia. Contohnya adalah madu (Mel deupuratum). Dalam hal penyimpanannya, simplisia yang tergolong dalam daftar obat keras, kecuali yang termasuk dalam kategori narkotika ditandai dengan simbol tengkorak dan harus disimpan dalam lemari yang terkunci (Haerani *et al.*, 2023).

3. Simplisia Pelikan atau Mineral

Simplisia mineral, atau yang lebih dikenal sebagai pelikan, merujuk kepada bahan baku pelikan atau mineral yang belum diolah atau hanya melalui proses pengolahan yang sederhana. Sebagai contoh, serbuk seng sering digunakan, namun kualitasnya sebagai simplisia tidak sebaik simplisia dari tanaman budidaya, karena mutu yang dihasilkan cenderung tidak konsisten (Maslahah, 2024).

2.2.3. Derajat Kehalusan Simplisia

- a. Daun, bunga, dan herba: ranjangan kasar dengan ukuran lebih kurang 4 mm
- Kulit, kayu, dan akar: ranjangan agak kasar dengan ukuran lebih kurang 2,5
 mm
- c. Buah dan biji: digerus atau diserbuk kasar dengan ukuran lebih kurang 2 mm

2.2.4. Pengambilan Bahan Simplisia

Berdasarkan garis besar pedoman panen, pengambilan bahan baku tanaman harus dilakukan dengan cara tertentu, sesuai dengan bagian tanaman yang akan digunakan yaitu sebagai berikut: (Maslahah, 2024).

a. Biji

Pengambilan dilakukan ketika buah mulai matang atau sebelum semua bagiannya pecah.

b. Buah

Panen dapat dilakukan ketika buah hampir matang (seperti lada), setelah buah sepenuhnya matang (seperti adas), atau saat ada perubahan warna atau bentuk pada buah (seperti asam, mahkota dewa, mengkudu).

c. Bunga

Panen bunga biasanya dilakukan menjelang proses penyerbukan, ketika bunga masih dalam keadaan kuncup, seperti pada bunga melati, atau saat bunga sudah mulai mekar, seperti pada bunga mawar.

d. Daun atau Herba

Daun atau herba sebaiknya dipanen saat proses fotosintesis mencapai puncaknya, yang ditandai oleh mulai mekar bunga atau matang buah. Sebaiknya, pucuk daun dipanen ketika sudah berwarna hijau tua untuk mendapatkan kualitas terbaik.

e. Kulit Batang

Pengambilan dilakukan ketika tumbuhan telah mencapai usia yang cukup matang, yaitu saat secara fisiologis sudah memasuki masa panen. Proses ini diharapkan tidak mengganggu pertumbuhan tanaman, sehingga sebaiknya dilaksanakan menjelang musim kemarau.

f. Umbi Lapis

Panen umbi lapis dilakukan ketika umbi telah mencapai ukuran maksimum dan pertumbuhan bagian tanaman di atasnya telah berhenti, seperti pada bawang merah.

g. Rimpang

Rimpang siap untuk dipanen dapat dikenali melalui mengeringnya bagian atas tanaman dan tercapainya ukuran maksimumnya. Sebaiknya untuk melakukan panen pada musim kering agar hasilnya optimal.

h. Akar

Panen akar dilakukan ketika pertumbuhan bagian atas tanaman telah berhenti atau saat tanaman telah mencapai usia yang cukup.

2.2.5. Proses Pembuatan Ekstrak

1. Penyiapan Simplisia

a. Simplisia Segar

1. Pengumpulan Bahan Baku

Pengumpulan simplisia dilakukan dengan memilih bagian tanaman yang memenuhi syarat untuk diolah, seperti daun, batang, atau akar, tergantung pada kebutuhan. Pengumpulan harus dilakukan pada waktu yang tepat (biasanya saat pagi atau sore) untuk mempertahankan kadar senyawa aktif. karena kadar senyawa aktif yang terkandung didalam simplisia akan bergantung pada beberapa hal seperti bagian tanaman yang digunakan, umur atau usia tanaman, waktu panen hingga lingkungan tempat tumbuh

2. Sortasi Basah

Sebelum pencucian, simplisia yang telah dipanen perlu disortasi segera untuk menghilangkan bagian-bagian yang tidak diinginkan, seperti daun layu, serangga, atau kotoran. Ketika dalam keadaan basah, kelembapan yang terdapat pada tanaman segar memudahkan identifikasi bagian yang rusak atau tidak layak. Proses ini memungkinkan pemisahan dengan lebih mudah dari bagian-bagian yang tidak memenuhi standar.

3. Pencucian

Setelah disortasi kemudian dicuci dengan air bersih untuk menghilangkan kotoran dan bahan kimia yang mungkin menempel.

4. Penirisan

Setelah pencucian, simplisia basah harus ditiriskan untuk menghilangkan kelebihan air. Ini dapat dilakukan dengan menggunakan saringan atau kain bersih. Proses ini penting untuk menghindari terlalu tingginya kadar air saat tahap berikutnya.

5. Perajangan

Beberapa jenis simplisia harus harus diubah menjadi bentuk lain misalnya irisan, potongan atau serutan. Proses ini bertujuan untuk mempermudah proses pengeringan, pengepakan hingga penggilingan simplisia. Tanaman yang telah dipanen sebaiknya langsung dijemur dalam

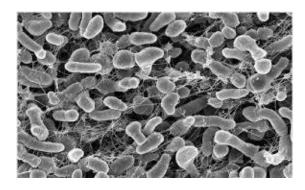
keadaan utuh selama 1 hari. Perajangan dilakukan dengan menggunakan pisau atau mesin rajang khusus agar diperoleh ukuran potongan yang seragam.

b. Simplisia Kering

1. Proses Pengeringan Simplisia

Prose pengeringan bertujuan mengurangi kadar air untuk memperoleh simplisia yang tidak mudah rusak agar dapat disimpan dalam jangka waktu yang lama. Kadar air yang berkurang mampu menghentikan proses enzimatik yang dapat mencegah menurunnya kualitas simplisia. Pengeringan dilakukan pada suhu 30–90 °C dimana suhu pengeringan terbaik adalah 60 °C. Jika simplisia tidak tahan terhadap pemanasan atau mudah menguap maka suhu pengeringan harus serendah mungkin (30 – 45 °C) atau dapat menggunakan pengeringan vakum.

2. Sortasi Kering


Proses ini merupakan tahapan akhir pembuatan simplisia yang dilakukan sebelum pengemasan, dengan tujuan untuk menghilangkan benda asing seperti bagian tanaman lain yang tidak diperlukan, kotoran, atau sisa lain yang mungkin masih terdapat pada simplisia kering.

3. Pembuatan Serbuk Simplisia

Tahap selanjutnya dalam proses ini adalah penyerbukan simplisia, yang merupakan pembuatan serbuk simplisia. Pada tahap ini, digunakan alat khusus untuk mencapai derajat kehalusan tertentu. Kehalusan serbuk simplisia sangat mempengaruhi kualitas ekstrak yang dihasilkan; semakin halus serbuk yang diperoleh, semakin efektif dan efisien pula proses ekstraksi yang dapat dilakukan. Namun, perlu diingat bahwa semakin halus serbuk tersebut, proses filtrasi juga akan menjadi lebih rumit. Selama penggunaan alat untuk penyerbukan, gerakan dan interaksi antara bahan dengan logam dan komponen lainnya dapat menghasilkan panas yang berpotensi memengaruhi senyawa yang terkandung dalam simplisia (Yumita, 2023).

2.3. Propionibacterium acnes

Propionibacterium acnes merupakan bakteri gram positif yang memiliki bentuk pleomorfik dan dapat tumbuh secara anaerob fakultatif, berarti bakteri ini mampu berkembang tanpa kehadiran oksigen dan memiliki laju pertumbuhan yang cenderung lambat. Propionibacterium acnes yaitu bakteri gram positif dan anaerob, yaitu flora normal kelenjar tsebaceous berbulu. Pada remaja yang memiliki jerawat konsentrasi P. acnesnya lebih tinggi dibandingkan remaja yang tidak berjerawat, tapi tidak ada korelasinya, antara hubungan jumlah P. acnes dengan tingkat keparahan jerawat. Peran P. acnes dalam patogenesis jerawat adalah menguraikan trigliserida yang merupakan komponen sebum menjadi asam lemak bebas, sehingga terjadi kolonisasi P. acnes dan menyebabkan inflamasi. Selain itu, antibodi terhadap antigen dinding sel P. acnes dapat meningkatkan respon inflamasi melalui aktivasi komplemen (Sifatullah & Zurkarnain, 2021).

Gambar 2. 2 Propionibacterium acnes (Zahrah et al., 2019)

2.3.1. Klasifikasi

Adapun klasifikasi ilmiah Propionibacterium acnes sebagai berikut:

Kerajaan : Bacteria

Divisi : Actinobacteria

Kelas : Actinobacteridae

Bangsa : Actinomycetales

Marga: Propionibacteriaceae

Genus : Propionibacterium

Spesies : Propionibacterium acnes

(Pairury et al., 2021).

2.3.2. Morfologi

Ciri khas *Propionibacterium acnes* dari dapat diamati melalui pewarnaan gram positif, di mana bakteri ini muncul dalam bentuk batang atau basil yang memiliki panjang dengan ujung melengkung. Struktur bakteri ini menyerupai bentuk ganda dan memiliki pewarnaan yang tidak merata serta tampak bermanikmanik. Ukuran P. acnes berkisar antara 0,5 hingga 0,8 nm lebar dan 3 hingga 4 nm tinggi, meskipun terkadang ia juga dapat muncul dalam bentuk bulat atau kokoid. walaupun beberapa strain P. acnes bersifat patogen bagi hewan dan tanaman, kebanyakan tidak memiliki toksisitas. Habitat utama P. acnes adalah pada kulit, khususnya di folikel sebaceous. Selain itu, bakteri ini juga dapat ditemukan di saluran pernapasan bagian atas, usus besar, paru-paru, konjungtiva, dan uretra (Pairury et al., 2021).

2.3.3. Patogenesis

Propionibacterium acnes termasuk dalam kelompok bakteri Corynebacteria dan merupakan bagian dari flora normal pada kulit. Bakteri ini memainkan peran penting dalam patogenesis jerawat dengan cara menguraikan komponen sebum, khususnya trigliserida, menjadi asam lemak bebas yang berfungsi sebagai mediator pemicu inflamasi. Propionibacterium acnes umumnya tumbuh dengan baik dalam rentang pH yang sedikit basa, antara 6,5 hingga 7,5. Dalam kondisi ini, bakteri dapat berkembang secara optimal, yang dapat memicu peradangan yang berkaitan dengan jerawat (Harefa et al., 2022).

2.4. Pengujian Aktivitas Antimikroba

Pengujian aktivitas antimikroba biasanya dilakukan untuk mengukur sejauh mana suatu senyawa atau komponen bioaktif dapat menghambat pertumbuhan mikroorganisme dalam kondisi yang terkontrol. Respons mikroorganisme terhadap zat antimikroba bervariasi, umumnya bersifat spesifik dan sensitif. Efektivitas antimikroba sangat tergantung pada konsentrasi dan kekuatan senyawa aktif atau komponen bioaktifnya. Potensi antimikroba suatu senyawa menunjukkan kekuatan suatu bahan atau senyawa dalam menghambat/mencegah pertumbuhan sel (mikrostatik) atau membunuh (mikrosidal) sel mikroorganisme.

Metode uji yang digunakan dalam pengujian aktivitas antimikroba suatu senyawa, yaitu metode difusi agar (*agar diffution*) yang menggunakan media padat (agar) dan metode dilusi (*broth dilution*) yang menggunakan media cair (broth) (Imelda *et al.*, 2023).

2.4.1. Metode Difusi Agar (Agar Diffution)

Prinsip dasar dari metode ini adalah bahwa senyawa atau zat antimikroba yang akan diuji akan berdifusi dari suatu reservoir (yang dapat berupa cakram atau sumur) ke dalam media agar yang telah diinokulasi dengan mikroorganisme uji. Metode difusi agar ini terbagi menjadi dua jenis yang umum, yaitu metode difusi cakram (disc diffusion) dan metode difusi sumur (well diffusion).

a. Metode Difusi Cakram (disc diffution)

Metode difusi cakram dikenal pula sebagai metode Kirby-Bauer merupakan metode standar yang direkomendasikan oleh Clinical and Laboratories Standards Institute (CLSI) di Amerika Serikat untuk pengujian kerentanan bakteri terhadap senyawa antimikroba secara in-vitro. Metode ini umum digunakan pada antibiotik-antibiotik yang baru ditemukan, untuk mengetahui sensitivitas atau resistensi bakteri patogen aerobik dan fakultatif terhadap berbagai antibiotik tersebut. Pada metode ini reservoir senyawa uji berupa kertas cakram (disc) steril. Respon yang diamati adalah daerah bening atau zona hambat (inhibition zone) yang terbentuk disekeliling cakram, selanjutnya diameter hambatan yang terbentuk tersebut dibandingkan dengan diameter baku standar (antibiotik) (Imelda *et al.*, 2023).

Metode difusi dengan menggunakan cakram dilakukan dengan cara menjenuhkan kertas cakram, yang berfungsi sebagai media penyerapan bahan antimikroba, ke dalam bahan uji. Setelah proses penjenuhan, kertas cakram tersebut diletakkan pada permukaan media agar yang telah diinokulasi dengan biakan mikroba uji. Selanjutnya, media diinkubasi selama 18-24 jam pada suhu 35°C. Setelah periode inkubasi, daerah atau zona bening di sekitar kertas cakram diamati untuk menentukan keberadaan pertumbuhan mikroba. Diameter zona bening ini berbanding lurus dengan jumlah mikroba uji yang digunakan pada kertas cakram. Salah satu keunggulan dari metode cakram adalah

kemampuannya untuk melakukan pengujian dengan lebih cepat dalam proses persiapan cakram (Nurhayati *et al.*, 2020).

b. Metode Difusi Sumuran (well diffution)

Metode ini banyak digunakan untuk pengujian kerentanan bakteri terhadap senyawa antimikroba secara in-vitro di laboratorium. Pada metode ini reservoir senyawa uji berupa sumuran yang dibuat di media agar Uji Mikrobiologi cawan dengan diameter tertentu. Respon yang diamati adalah daerah bening atau zona hambat (inhibition zone) yang terbentuk disekeliling sumuran tersebut, selanjutnya diameter hambatan yang terbentuk tersebut dibandingkan dengan diameter baku standar (antibiotik) (Imelda *et al.*, 2023).

Metode sumuran dilakukan dengan cara membuat lubang yang tegak lurus pada agar padat yang telah diinokulasi dengan bakteri uji. Jumlah dan letak lubang disesuaikan dengan tujuan penelitian, setelah itu lubang-lubang tersebut diisi dengan sampel yang akan diuji. Setelah proses inkubasi, pertumbuhan bakteri diamati untuk menentukan ada tidaknya daerah hambatan di sekitar lubang. Salah satu keunggulan metode sumuran adalah kemudahan dalam mengukur luas zona hambat yang terbentuk, karena bakteri dapat aktif tidak hanya di permukaan agar, tetapi juga hingga ke bagian bawahnya. Namun, dalam pembuatan metode sumuran juga menghadapi kesulitan, seperti sisa-sisa agar yang mungkin tertinggal di media, serta adanya kemungkinan media agar retak atau pecah di sekitar lubang. Kondisi ini dapat mengganggu proses peresapan antibiotik ke dalam media, yang akan mempengaruhi pembentukan diameter zona bening saat pengujian sensitivitas dilakukan (Nurhayati *et al.*, 2020).

2.4.2. Metode Dilusi (Broth Dilution)

Prinsip dasar dari metode ini adalah bahwa senyawa atau zat antimikroba yang akan diuji dikontakkan dengan mikroorganisme uji dalam media cair. Metode dilusi dibagi menjadi dua metode umum, yaitu metode dilusi pengenceran dengan tabung uji (macrodilution) dan metode dilusi pengenceran dengan microplate (microdilution).

1. Metode Macrodillution

Metode ini dikenal pula sebagai metode kontak untuk pengujian kerentanan mikroorganisme terhadap senyawa antimikroba secara in-vitro. Pada metode ini senyawa uji dimasukkan ke dalam media cair steril dengan beberapa seri pengenceran, mulai dari konsentrasi rendah ke tinggi (dua kali lipat konsentrasi awal). Respon yang diamati berdasarkan kekeruhan (turbiditas) yang ditimbulkan oleh pertumbuhan mikroorganisme, seringkali dilanjutkan dengan perhitungan jumlah sel.

2. Metode Microdilution

Metode ini serupa dengan metode macrodilution, hanya berbeda pada volume media dan wadah pengujian. Pada microdilution volume media yang digunakan hanya 50 μL untuk setiap sumur (well) pada microplate (*Imelda et al.*, 2023).

2.5. Ekstraksi

Ekstrak adalah sediaan kering, kental atau cair dibuat dengan menyari Simplisia nabati atau hewani menurut cara yang cocok, di luar pengaruh cahaya matahari langsung (BPOM RI, 2023).

Ekstraksi adalah proses pengambilan senyawa kimia yang terdapat dalam tumbuhan dengan memanfaatkan pelarut cair. Melalui proses ini, dihasilkan ekstrak yang larut, yang memungkinkan pemisahan dari komponen yang tidak larut. Ada dua metode ekstraksi yang umum digunakan, yaitu metode dingin dan metode panas. Metode dingin biasanya dilakukan dengan cara maserasi dan perlokasi (Najib, 2017).

2.5.1. Cara Dingin

1. Maserasi

Maserasi adalah metode sederhana yang paling umum digunakan dalam proses ekstraksi, baik untuk skala kecil maupun industri (Agoes, 2007). Metode ini melibatkan pencampuran serbuk tanaman dengan pelarut yang sesuai di dalam wadah inert yang tertutup rapat pada suhu kamar. Proses ekstraksi akan dihentikan ketika terjadi kesetimbangan antara konsentrasi senyawa dalam pelarut dan dalam sel tanaman. Setelah proses ekstraksi selesai, pelarut kemudian dipisahkan dari sampel melalui penyaringan. Meskipun, maserasi

memiliki kelebihan, metode ini juga memiliki beberapa kekurangan. Metode ini cukup memakan waktu dan memerlukan sejumlah pelarut yang relatif banyak, serta ada kemungkinan hilangnya beberapa senyawa selama proses. Di samping itu, beberapa senyawa mungkin sulit diekstraksi pada suhu kamar. Namun, di sisi positif, maserasi memiliki keunggulan dalam menjaga integritas senyawa-senyawa yang bersifat termolabil dari kerusakan (Ibrahim *et al.*, 2016).

2. Perkolasi

Metode perkolasi dilakukan dengan cara membasahi serbuk sampel secara bertahap di dalam perkolator, yaitu wadah silinder yang dilengkapi dengan kran di bagian bawahnya. Pelarut ditambahkan ke bagian atas serbuk dan dibiarkan menetes perlahan ke bagian bawah. Salah satu keunggulan metode ini adalah bahwa sampel senantiasa mendapatkan aliran pelarut yang segar. Namun, terdapat juga beberapa kelemahan; jika sampel yang diletakkan dalam perkolator tidak homogen, pelarut akan sulit menjangkau seluruh area. Selain itu, penggunaan metode ini memerlukan banyak pelarut dan juga waktu yang cukup lama (Ibrahim *et al.*, 2016)

2.5.2. Cara Panas

1. Sokhletasi

Metode ini dilakukan dengan menempatkan serbuk sampel ke dalam sarung selulosa, yang bisa berupa kertas saring, yang kemudian diletakkan di dalam klonsong. Klonsong ini diatur di atas labu dan di bawah kondensor. Selanjutnya, pelarut yang sesuai dimasukkan ke dalam labu, dan suhu pemanas disetel di bawah suhu reflux. Salah satu keuntungan dari metode ini adalah proses ekstraksi yang berjalan secara terus-menerus, di mana sampel diekstraksi oleh pelarut murni hasil kondensasi. Dengan demikian, proses ini tidak memerlukan banyak pelarut dan dapat dilakukan dalam waktu yang relatif singkat. Namun, ada juga kerugian dari metode ini, yaitu senyawa yang bersifat termolabil dapat terdegradasi karena ekstrak yang diperoleh terus-menerus berada pada titik didih (Ibrahim *et al.*, 2016).

2. Refluks

Refluks adalah metode ekstraksi menggunakan pelarut pada suhu titik didihnya, yang dilakukan dalam jangka waktu tertentu dengan jumlah pelarut yang relatif konstan dan dengan bantuan pendingin balik. Biasanya, proses ini diulangi pada residu pertama sebanyak 3 hingga 5 kali, sehingga dapat dianggap sebagai proses ekstraksi yang optimal (Depkes, 2000).

3. Digesti

Digesti adalah proses maserasi kinetik yang dilakukan dengan pengadukan secara kontinu pada suhu yang lebih tinggi daripada suhu ruangan. Umumnya, proses ini dilaksanakan pada suhu antara 40 hingga 50°C (Depkes, 2000).

4. Infus

Infus adalah proses ekstraksi dengan menggunakan air sebagai pelarut pada suhu air mendidih. Dalam metode ini, bejana infus dicelupkan ke dalam penangas air yang dipanaskan pada suhu antara 96 hingga 98°C selama jangka waktu tertentu, biasanya antara 15 hingga 20 menit (Depkes, 2000).

5. Dekok

Dekok adalah proses infusi yang dilakukan dalam waktu lebih lama, biasanya pada suhu sekitar 30°C, hingga mencapai titik didih air (Depkes, 2000).

2.6. Salep

2.6.1. Definisi Salep

Menurut FI IV, salep adalah sediaan setengah padat yang ditujukan untuk pemakaian topical kulit atau selaput lendir tidak boleh berbau tengik, kecuali dinyatakan lain kadar bahan obat dalam salep mengandung obat keras narkotika adalah 10% (Ummah, 2019).

Salep adalah sediaan setengah padat yang lembut dan mudah dioleskan, umumnya disusun dari hidrokarbon cair yang dicampur dalam suatu kelompok hidrokarbon padat dengan titik leleh yang lebih tinggi, ditujukan untuk pemakaian topikal pada kulit atau membran mukosa tetapi tidak selalu mengandung bahan obat, bahan obat ini harus larut atau terdispersi homogen dalam dasar salep yang cocok, serta menunjukkan karakteristik aliran plastis (Tungadi, 2020).

2.6.2. Jenis-jenis Salep

Berdasarkan sifat farmakologi/teurapetik, salep dibagi menjadi:

- a. Salep epidermis (epidermic ointhment/salep penutup) digunakan untuk melindungi kulit dan menghasilkan efek lokal, tidak diansorpsi, kadangkadang ditambahkan antiseptik, astringensia untuk menurunkan rangsangan atau anestesi lokal.
- b. Salep endodermis, merupakan salep yang bahan obatnya menembus kulit, tetapi tidak melalui kulit, terabsorbsi sebagian, digunakan untuk melunakan kulit atau selaput lendir.
- c. Salep diadermis, merupakan salep yang bahan obatnya menembus kedalam tubuh melalui kulit dan mencapai efek yang diinginkan.

Berdasarkan konsistensinya salep dapat dibagi:

- a. Unguenta, yaitu salep yang mempunyai konsistensi seperti mentega, tidak mencair pada suhu biasa tetapi mudah dioleskan tanpa memakai tenaga.
- b. Cream, yaitu sediaan salep dengan kandungan air yang tinggi, mudah diserap kulit, dan termasuk jenis yang dapat yang dapat dibersihkan atau dicuci menggunakan air.
- c. Pasta, yaitu suatu salep yang mengandung lebih dari 50% zat padat (serbuk). Suatu salep tebal karena merupakan penutup atau pelindung bagian kulit yang diberi.
- d. Cerata, yaitu suatu salep berlemak yang mengandung persentase tinggi lilin (waxes), sehingga konsistensinya lebih keras.
- e. Gelones Spumae (Jelly), yaitu suatu salep yang lebih halus. Umumnya cair dan mengandung sedikit atau tanpa lilin digunakan terutama pada membran mukosa sebagai pelicin atau basis. Biasanya terdiri dari campuran sederhana minyak dan lemak dengan titik lebur yang rendah.

Berdasarkan dasar salep dibagi menjadi:

a. Salep hydrophobic adalah salep-salep dengan bahan dasar berlemak, misalnya: campuran dari lemak-lemak, minyak lemak, malam yang tidak tercuci dengan air. b. Salep hydrophilic adalah salep yang kuat menarik air, biasanya dasar salep tipe o/w atau seperti dasar hydrophobic tetapi konsistensinya lebih lembek, kemungkinan juga tipe w/o antara lain campuran sterol dan petrolatum

(Ummah, 2019).

2.6.3. Basis Salep

Basis salep adalah bahan atau bagian dari salep yang berfungsi sebagai carrier atau pembawa untuk obat. Basis yang biasa digunakan dalam sediaan salep dapat diklasifikasikan menjadi 4 yaitu basis hidrokarbon, basis absorbsi, basis emulsi, dan basis larut air (Tungadi, 2020).

1. Basis Hidrokarbon

Jeli petroleum putih dan salep berminyak lainnya mendapatkan manfaat dari bahan dasar salep ini, yang hanya mengandung sejumlah kecil komponen air. Salep ini tidak hanya berfungsi sebagai perban penutup, tetapi juga memperpanjang waktu kontak obat dengan kulit. Sebagai emolien, dasar salep hidrokarbon ini sulit dihilangkan, tidak mengering, dan tetap stabil seiring berjalannya waktu.

2. Basis Absorbsi

Terdapat dua kelompok bahan dasar salep yang mampu menyerap air. Pertama, produk salep yang berinteraksi dengan air untuk membentuk emulsi air dalam minyak, seperti parafin hidrofilik dan lanolin anhidrat. Kedua, emulsi yang menggabungkan minyak dan air dengan penambahan larutan berair dari lanolin. Selain itu, basis salep ini juga berperan sebagai emolien.

3. Basis Emulsi

Salep ini terbuat dari emulsi minyak dalam air, yang menjadikannya termasuk dalam kategori salep hidrofilik (krim). Salah satu keunggulan salep ini adalah kemampuannya untuk dihilangkan dengan mudah menggunakan air, baik dari kulit maupun dengan kain basah, sehingga lebih diterima sebagai basis kosmetik. Selain itu, beberapa obat dapat menunjukkan efektivitas yang lebih baik jika menggunakan salep berbasis krim ini dibandingkan dengan basis krim hidrokarbon. Keunggulan lain dari krim ini adalah kemampuannya

untuk diencerkan dengan air dan mudah menyerap cairan pada area yang mengalami masalah kulit.

4. Basis larut air

Dasar salep ini dikenal sebagai dasar salep tak berlemak dan terdiri dari bahan yang larut dalam air.

2.6.4. Syarat-syarat basis yang ideal

Menurut Beeler, beberapa peneliti telah menggambarkan basis yang ideal seperti yang ditunjukkan dengan sifat fisika kimia dibawah ini: (Tungadi, 2020).

- a. Stabil
- b. Netral dalam reaksi
- c. Tidak berlemak
- d. Lemak tidak dihilangkan dalam reaksi
- e. Tidak mengiritasi
- f. Tidak kehilangan air
- g. Tidak higroskopis
- h. Dapat dicuci dengan air
- i. Dapat bercampur dengan semua bahan obat
- j. Bebas dari bau yang tidak enak
- k. Tidak meninggalkan noda
- 1. Efisien pada kulit kering, berminyak dan lembut
- m. Dapat membantu sebagai medium untuk zat kimia yang larut air atau lemak
- n. Dapat sebagai sediaan stok untuk penggunaan selanjutnya
- o. Tersusun atas bahan kimia yang diketahui komposisinya
- p. Dapat menyimpan sekurang-kurangnya 50% air
- q. Mudah dicampur oleh farmasis
- r. Melebur/melembut pada suhu tubuh.

2.6.5. Kekurangan dan kelebihan Salep

1. Kekurangan

a. Kekurangan basis hidrokarbon, yaitu sifatnya yang berminyak dapat meninggalkan noda pada pakaian serta sulit tercuci dan sulit di bersihkan dari permukaan kulit.

- b. Kekurangan basis absorpsi, yaitu kurang tepat bila di pakai sebagai pendukung bahan bahan antibiotik dan bahan bahan kurang stabil dengan adanya air.
- c. Mempunyai sifat hidrofil atau dapat mengikat air.

2. Kelebihan

- a. Sebagai bahan yang membawa kandungan obat untuk pengobatan kulit.
- b. Sebagai bahan pelumas pada kulit.
- c. Sebagai pelindung bagi kulit yaitu untuk mencegah kontak permukaan kulit dengan larutan berair dan rangsang kulit.
- d. Sebagai pemakaian obat luar.

(Ummah, 2019).

2.7. Monografi Bahan

1. PEG (Polietilen Glikol) 400 dan 4000

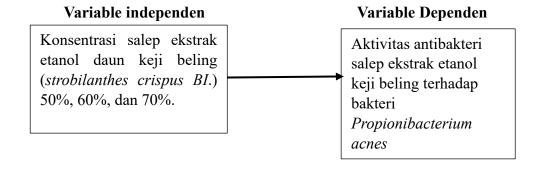
Polietilen glikol adalah suatu polimer tambahan dari etilen oksida dan air dinyatakan dengan rumus: H(OCH₂CH₂)nOH. Bentuk cair umumnya jernih dan berkabut, cairan kental, tidak berwarna atau praktis tidak berwarna, agak higroskopik, bau khas lemah. Bentuk padat biasanya praktis tidak berbau dan tidak berasa, putih, licin seperti plastik mempunyai konsistensi seperti malam, serpihan butiran atau serbuk, putih gading (Kemenkes RI, 2023).

a. PEG 400

Polyethylene Glycol 400 (PEG 400) merupakan cairan polimer sintetis yang terdiri dari unit berulang etilen oksida dan air. Bahan ini digunakan secara luas dalam formulasi farmasi, kosmetik, dan industri karena sifatnya yang larut dalam air, viskositas sedang, dan keamanan tinggi. Adapun sifat fisika dan kimia bahan ini sebagai berikut: (Aldrich, 2022).

- 1) Bentuk: Cairan kental, tidak berwarna hingga kuning pucat.
- 2) Bau: Hampir tidak berbau.
- 3) Kelarutan: Larut dalam air, etanol, aseton, dan gliserol; tidak larut dalam eter.
- 4) pH (1% larutan dalam air): 4.5 7.5.
- 5) Viskositas: 90-120 mPa·s (pada 20°C).

- 6) Titik Lebur: -65°C hingga -50°C.
- 7) Titik Beku: < -14,08 °C pada 973,5 hPa (ECHA)
- 8) Titik Didih: Sekitar 250°C (pada tekanan normal).
- 9) Berat Jenis: 1.120-1.130 g/cm³ (pada 25°C).


b. PEG 4000

Polyethylene Glycol 4000 (PEG 4000) adalah polimer sintetis berbentuk padatan yang terdiri dari unit berulang etilen oksida. Bahan ini memiliki aplikasi luas dalam formulasi farmasi sebagai agen osmotik, bahan tambahan tablet, dan basis suppositoria, serta dalam kosmetik dan industri. Adapun sifat fisika dan kimia bahan ini yaitu sebagai berikut: (Millipore, 2022).

- 1) Bentuk: Padatan putih, berbentuk serpihan atau butiran.
- 2) Bau: Hampir tidak berbau.
- 3) Kelarutan: Larut dalam air, etanol; tidak larut dalam pelarut organik nonpolar.
- 4) pH (1% larutan dalam air): 4.5 7.5.
- 5) Titik Lebur: 26 32 °C.
- 6) Berat Jenis: 1.2 g/cm³ (pada 25°C).

2.8. Kerangka Konsep

Adapun kerangka konsep dari penelitian ini yaitu sebagai berikut:

2.9 Hipotesa

H0: Tidak ada aktivitas antibakteri pada salep ekstrak etanol keji beling terhadap bakteri *Propionibacterium acnes*

Ha: Adanya aktivitas antibakteri pada salep ekstrak etanol keji beling terhadap bakteri *Propionibacterium acnes*

2.10 Definisi operasional

Adapun definisi operasional dari kerangka konsep yaitu:

1. Variable Independen

Tabel 2. 1 Variable Independen

Variable	Definisi operasional
Konsentrasi salep ekstrak etanol daun keji beling (<i>strobilanthes crispus BI</i> .) 50%, 60%, dan 70%.	Kadar yang digunakan dalam pembuatan salep adalah ekstrak etanol daun keji beling dengan konsentrasi 50%, 60%, dan 70%.

2. Variable dependen

Tabel 2. 2 Variable dependen

Definisi	Alat	Cara	Hasil ukur	Skala
operassional	ukur	ukur		
Kemampuan salep ekstrak keji beling dalam menghambat bakteri Propionibact erium acnes	Jangka sorong	Melihat zona bening.	Diameter zona bening yang terbentuk (mm). aktivitas zona hambat yaitu: >20 mm: sangat kuat, 10-20 mm: kuat, 5-10 mm: sedang, 0-5 mm: lemah, (Tobaq et al. 2023)	Rasio
	Kemampuan salep ekstrak keji beling dalam menghambat bakteri	keji beling dalam menghambat bakteri Propionibact ukur Jangka sorong sorong	operassionalukurukurKemampuan salep ekstrak keji beling dalam menghambat bakteri PropionibactJangka sorong bening bening.	Kemampuan salep ekstrak keji beling dalam menghambat bakteri Propionibact erium acnes was alep ekstrak keji beling dalam terbentuk (mm). aktivitas zona hambat yaitu: >20 mm: sangat kuat, 10-20 mm: kuat, 5-10 mm: sedang, 0-5 mm: lemah,